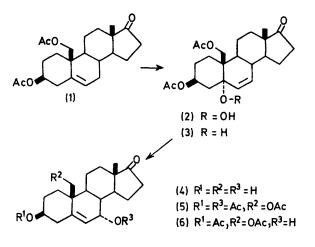
J.C.S. Снем. Сомм., 1972

Potential Oestrogen Precursors: The Synthesis of 7,19-Disubstituted Androgens


By Peter Morand* and A. VAN TONGERLOO

(Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 6N5)

Summary The synthesis of 7α -substituted steroids in good yield by allylic rearrangement of Δ^{6} - 5α -hydroxy-steroids is described.

 3β ,7 α -DIHYDROXYANDROST-5-EN-17-ONE (4) can be converted by human and equine placenta into equilin and equilenin.¹ However, there remains considerable doubt as to the

exact sequence of the intermediates involved in the biosynthesis² of these oestrogens. For ring B saturated oestrogens such as oestrone, it is known³ that 19-hydroxy-androgens are obligatory intermediates. It was of interest, therefore, to prepare the corresponding compounds substituted at C-7 and C-19 in order to determine their efficiency in the biosynthesis of ring B unsaturated oestrogens as compared with compounds substituted only at C-7.

Schenk and his co-workers⁴ have reported the conversion of cholesterol into cholest-5-ene- 3β ,7 α -diol in reasonable yield by photosensitized oxygenation to give the 5α hydroperoxide, which, on rearrangement and subsequent reduction, yields exclusively the 7α -hydroxy-compound. By use of Schenk's conditions, we converted 3β , 19-diacetoxyandrost-5-en-17-one (1) into the 5α -hydroperoxide (2), reduction of which gave the 5α -hydroxy-compound (3) in an overall yield of 78% based on recovered starting material. However, all attempts to rearrange the 5α hydroperoxide to the 7α -isomer failed.

Treatment of the 5α -alcohol (3) with aqueous acetic acid (1:4) at room temperature for 1.5 h gave $3\beta,7\alpha,19$ -triacetoxyandrost-5-en-17-one[†] (5) (14%),δ (CDCl₃) 0.87 (3H, s, 13-CH₃), 1.99 (9H, s, 3 × OAc), 5.10 (1H, t, 7 β -H), 3.90, 4.65 (2H, q, 10-CH₂·OAc, J 12 Hz), and 5.82 p.p.m. (1H, d, 6-H, J 5.0 Hz); $[\alpha]_{D} = -99.5^{\circ}$ (c 0.28 in CHCl₃)]; and 3 β , 19diacetoxy-7a-hydroxyandrost-5-en-17-one (6) (70%), m.p. 139–140°; $[\alpha]_{D} = -94.7^{\circ}$ (c 0.49 in CHCl₃) δ (CDCl₃) 0.89 $(3H, s, 13-CH_3)$, 2.00 (6H, s, 2 × OAc), 3.90 (1H, m, 7 β -H), 3.90, 4.60 (2H, q, 10-CH₂·OAc, J 12 Hz), and 5.86 p.p.m. (1H, d, 6-H, J 5.5; Hz)]. Although initially it is the 7α -hydroxy- and 7α -acetoxy-compounds that are formed exclusively, prolongation of the reaction under the conditions used for the rearrangement gives the 7β -epimers. Experiments are in progress to determine the mechanism of this allylic rearrangement.

We thank the National Research Council of Canada for financial support.

(Received, October 18th, 1971; Com. 1819.)

¹L. Stárka and H. Breuer, Biochim. Biophys. Acta, 1966, 115, 306; Z. physiol. Chem., 1966, 344, 124.

² For a review of the biosynthesis of oestrogens see P. Morand and J. Lyall, Chem. Rev., 1968, **68**, 85. ³ J. E. Longchampt, C. Gual, M. Ehrenstein, and R. I. Dorfman, Endocrinol., 1960, **66**, 416; R. B. Wilcox and L. L. Engle, Steroids, Suppl. I, 1965, 49.

G. O. Schenk, O. A. Neumüller, and W. Eisfeld, Annalen, 1958, 618, 202.

⁵ C. W. Shoppee and B. C. Newman, J. Chem. Soc. (C), 1968, 981.

[†] Satisfactory analyses were obtained for the compounds reported.

[‡] The coupling constants $J_{6,72}$ and $J_{6,72}$ in Δ^5 -7-acetates have been reported⁵ to be 4.5 and 9.0 Hz, respectively. These values are greater by a factor of *ca*. 2 than those observed by us for our compounds. On communicating this information to Professor Shoppee, the latter indicated that the values reported in his paper should be halved.